Q:

What is 11 to the Power of 33?

Accepted Solution

A:
Solution: 11 to the Power of 33 is equal to 2.3225154419887806e+34 Methods Step-by-step: finding 11 to the power of 33 The first step is to understand what it means when a number has an exponent. The β€œpower” of a number indicates how many times the base would be multiplied by itself to reach the correct value. The second step is to write the number in the base-exponent form, and lastly calculate what the final result would be. Consider the example of 2 to the power of 4: in exponent form that would be 2 4 2^4 2 4 . To solve this, we need to multiply the base, 2 by itself, 4 times - 2 β‹… 2 β‹… 2 β‹… 2 2\cdot2\cdot2\cdot2 2 β‹… 2 β‹… 2 β‹… 2 = 16. So 2 4 = 16 2^4 = 16 2 4 = 16 . So re-applying these steps to our particular problem, we first convert our word problem to a base-exponent form of: 1 1 33 11^{33} 1 1 33 To simplify this, all that is needed is to multiply it out: 11 x 11 x 11 x 11 x ... (for a total of 33 times) = 2.3225154419887806e+34 Therefore, 11 to the power of 33 is 2.3225154419887806e+34. Related exponent problems: Here some other problems that you can read and practice with! What is 15 to the Power of 29? What is 3 to the Power of 97? What is 12 to the Power of 99? What is 25 to the Power of 43? What is 23 to the Power of 46?